Kajian Fisis Optimalisasi Daya Bateray Lithium dalam Pengaruh Deformasi

Authors

  • Safaruddin A Prasad Universitas Bung Karno
  • Jufra Jufra Universitas Halu Oleo
  • Akhiruddin Maddu Institut Pertanian Bogor

DOI:

https://doi.org/10.62024/radial.v1i2.11

Keywords:

Modulus, Lithium Battery Power, Deformation, Multiple Linear Regression Analysis, Magnetic Induction Coil

Abstract

Simulations have been carried out of equal power for lithium batteries with one-way diffraction grating deformation using magnetic induction coils which are converted into heat energy to heat a certain volume of water. The heating time was observed from the initial temperature of 30 degrees Celsius to the final temperature of 100 degrees Celsius for each coil length L. Using multiple linear regression analysis, a power change ratio of 0.95 was obtained. This means that the battery power will increase by 0.05 or 5 percent if it is treated with a compressive force to the limit of elasticity. This is possible because Lithium has a Young's modulus of 4.9 GPa, a shear modulus of 4.2 GPa, and a bulk modulus of 11 GPa.

References

Jakarta Termasuk Kota dengan Kualitas Udara Terburuk di Dunia (Kompas.com, 17/06/2022, 12:30 WIB).

Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (edisi ke-ke-86). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.

Tuoriniemi, Juha; Juntunen-Nurmilaukas, Kirsi; Uusvuori, Johanna; Pentti, Elias; Salmela, Anssi; Sebedash, Alexander (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature. 447 (7141): 879. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921.

Struzhkin, V. V.; Eremets, M. I.; Gan, W; Mao, H. K.; Hemley, R. J. (2002). "Superconductivity in dense lithium". Science. 298 (5596): 1213–5. Bibcode:2002Sci...298.1213S. doi:10.1126/science.1078535. PMID 12386338.

Overhauser, A. W. (1984). "Crystal Structure of Lithium at 4.2 K". Physical Review Letters. 53: 64–65. Bibcode:1984PhRvL..53...64O. doi:10.1103/PhysRevLett.53.64.

Denissenkov, P. A.; Weiss, A. (2000). "Episodic lithium production by extra-mixing in red giants". Astronomy and Astrophysics. 358: L49–L52. arXiv:astro-ph/0005356. Bibcode:2000A&A...358L..49D.

Seitz, H. M.; Brey, G. P.; Lahaye, Y.; Durali, S.; Weyer, S. (2004). "Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes". Chemical Geology. 212 (1–2): 163–177. doi:10.1016/j.chemgeo.2004.08.009.

"Disposable Batteries - Choosing between Alkaline and Lithium Disposable Batteries". Batteryreview.org. Diakses tanggal 10 October 2013.

"Battery Anodes > Batteries & Fuel Cells > Research > The Energy Materials Center at Cornell". Emc2.cornell.edu. Diakses tanggal 10 October 2013.

Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (edisi ke-ke-86). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.

Tuoriniemi, Juha; Juntunen-Nurmilaukas, Kirsi; Uusvuori, Johanna; Pentti, Elias; Salmela, Anssi; Sebedash, Alexander (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature. 447 (7141): 879. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921.

Struzhkin, V. V.; Eremets, M. I.; Gan, W; Mao, H. K.; Hemley, R. J. (2002). "Superconductivity in dense lithium". Science. 298 (5596): 1213–5. Bibcode:2002Sci...298.1213S. doi:10.1126/science.1078535. PMID 12386338.

Seitz, H. M.; Brey, G. P.; Lahaye, Y.; Durali, S.; Weyer, S. (2004). "Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes". Chemical Geology. 212 (1–2): 163–177. doi:10.1016/j.chemgeo.2004.08.009

Downloads

Published

30-09-2023

How to Cite

Prasad, S. A., Jufra, J., & Maddu, A. (2023). Kajian Fisis Optimalisasi Daya Bateray Lithium dalam Pengaruh Deformasi. Radial : Jurnal Ilmiah Sains Dan Rekayasa, 1(2), 89–98. https://doi.org/10.62024/radial.v1i2.11

Issue

Section

Articles